Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A direct-write configuration of microsphere photolithography (MPL) is investigated for the patterning of IR metasurfaces at large scales. MPL uses a self-assembled hexagonal close-packed array of microspheres as an optical element to generate photonic nanojets within a photoresist layer. The photonic jets can be positioned within the microsphere-defined unit cells by controlling the illumination’s angle of incidence (AOI). This allows the definition of complex antenna elements. A digital micromirror device is used to provide spatial modulation across the microsphere arrays and coordinated with a set of stages providing AOI control. This provides hierarchical patterning at the sub- and super-unit cell levels and is suitable for a range of metasurfaces. The constraints of this approach are analyzed and demonstrated with a polarization-dependent infrared perfect absorber/emitter, which agrees well with modeling.more » « less
-
Microsphere photolithography (MPL) is a fabrication technique that combines the ability to self-assemble arrays of microspheres with the ability of a microsphere to focus light to a photonic jet, in order to create highly ordered nanoscale features in photoresist. This paper presents a model of photoresist exposure with the photonic jet, combining a full-wave electromagnetic model of the microsphere/photoresist interaction with the sequential removal of exposed photoresist by the developer. The model is used to predict the dose curves for the MPL process based on the photoresist thickness, illumination conditions, and development time. After experimental validation, the model provides insight into the process including the resolution, sensitivity, and effects of off-normal illumination. This guides the fabrication of sub-100 nm hole/disk arrays using lift-off, and superposition is shown to predict the geometry for split-ring resonators created using multiple exposures. This model will assist synthesizing fabrication parameters to create large area scalable metasurfaces with sensing and energy management applications.more » « less
-
The freezing process is significantly influenced by environmental factors and surface morphologies. At atmospheric pressure, a surface below the dew and freezing point temperature for a given relative humidity nucleates water droplets heterogeneously on the surface and then freezes. This paper examines the effect of nanostructured surfaces on the nucleation, growth, and subsequent freezing processes. Microsphere Photolithography (MPL) is used to pattern arrays of silica nanopillars. This technique uses a self-assembled lattice of microspheres to focus UV radiation to an array of photonic jets in photoresist. Silica is deposited using e-beam evaporation and lift-off. The samples were placed on a freezing stage at an atmospheric temperature of 22±0.5°C and relative humidities of 40% or 60%. The nanopillar surfaces had a significant effect on droplet dynamics and freezing behavior with freezing accelerated by an order of magnitude compared to a plain hydrophilic surface at 60% RH where the ice bridges need to cover a larger void for the propagation of the freezing front within the growing droplets. By pinning droplets, coalescence is suppressed for the nanopillared surface, altering the size distribution of droplets and accelerating the freezing process. The main mechanism affecting freezing characteristics was the pinning behavior of the nanopillared surface.more » « less
An official website of the United States government
